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1901. Multiplying the brackets together before squaring,

(3x + 1)2(3−x − 1)2

≡ (1 − 3x + 3−x − 1)2

≡ (3−x − 3x)2

≡ 9x − 2 + 9−x

= y − 2 + 1/y.

1902. The best linear approximation to f at x =
√

8 is
g such that y = g(x) is tangent to y = f(x). The
derivative is f ′(x) = 3x2 − 4. The values are

f ′ (√
8
)

= 20,

f
(√

8
)

= 8
√

2.

Hence, the tangent line is y − 8
√

2 = 20
(
x −

√
8
)
.

Simplifying, g(x) = 20x − 32
√

2.

1903. Substituting in, we have sin2 t + sin2 2t = 1. The
double-angle formula sin 2t ≡ 2 sin t cos t gives

sin2 t + 4 sin2 t cos2 t = 1
=⇒ sin2 t + 4 sin2 t(1 − sin2 t) = 1
=⇒ 4 sin4 t − 5 sin2 t + 1 = 0
=⇒ (4 sin2 t − 1)(sin2 t − 1) = 0
=⇒ sin t = ±1/2, ±1.

The value t = π/6 is a root of sin t = 1/2. This lies
in [0, π/6], so the curve does intersect the circle.

1904. In most statistical analyses, a statistician wants
to represent the underlying population. In most
types of distribution, there are more data around
the centre, and fewer in the tails. This imbalance
in the amount of data means:

• It is possible to make images with finer detail
in the centre, because there are more data.
This is achieved with narrow classes.

• It is necessary to address sampling variation
in the tails, because there are fewer data.
This is achieved with broad classes.

Nota Bene

One way of thinking about this is using the idea
of focus. A histogram tends to be in sharper focus
at the centre, bringing out detail, and blurrier in
the tails, to cover up errors.

1905. (a) The even-powered curves have a broadly
parabolic shape, which becomes more and
more “snub-nosed” as the degree increases. So,
for large k ∈ N, y = x2k looks like

x

y

1−1

(b) The odd-powered curves have a broadly cubic
shape, which hugs the x axis more tightly on
the interval (−1, 1) as the degree increases. So,
for large k ∈ N, y = x2k+1 looks like

x

y

1−1

1906. Integrating, the second derivative is kx + c1, the
first derivative is 1

2 kx2 + c1x + c2, and the original
function is 1

6 kx3 + 1
2 c1x2 +c2x+c3. Simplifying the

constants, the set of solution curves is all cubics of
the form

y = 1
6 kx3 + bx2 + cx + d.

1907. (a) Using triangle geometry, the two parts of the
sling are at angle θ to the horizontal, where
tan θ = 5

20 = 1
4 . Hence, our force diagram is

1.2

1.2

θ

This gives Nii horizontally as

2 × 1.2 cos θ = 0.04a

=⇒ a = 58.2 ms−2 (3sf).

(b) In order to find the angle in part (a), we had to
assume that the ball-bearing was a particle, i.e.
that it had negligible size. We also assumed
that the sling itself had negligible thickness.

1908. Substituting 75° into the identity,

1 + cot2 75° =
(√

6 −
√

2
)2

=⇒ cot2 75° = 7 − 4
√

3
=⇒ tan2 75° = 1

7−4
√

3 .

We then rationalise the denominator, multiplying
top and bottom by its conjugate 7 + 4

√
3:

tan2 75° = 7 + 4
√

3
49 − 48

= 7 + 4
√

3

=
(
2 +

√
3
)2

.

Taking the positive square root, tan 75° = 2 +
√

3,
as required.
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1909. Since the median is 0, the data are, in ascending
order,

{a, b, 0, c, 1}.

The greatest value of a, and hence the least value
of Rx, occurs when a = b and c = 0. In this case,
the mean gives a = b = − 1

2 and Rx = 3
2 . The

least value of a, and so the greatest value of Rx,
occurs when b = c = 0, giving a = −2 and Rx = 3.
But neither of these bounds is attainable, as each
would have two modes, rather than simply 0 as
stated in the question. Hence, the inequalities are
strict, giving 3

2 < Rx < 3 as required.

1910. Writing 4x as (2x)2, we can express the left-hand
side’s denominator as a difference of two squares.
It factorises: 4x−1 ≡ (2x−1)(2x+1). Dividing top
and bottom by (2x − 1) yields the required result.

1911. In each case, the rightwards implication obviously
holds. So, the question is whether the leftwards
implication holds or not.

(a) The implication is x = y =⇒ sin x = sin y. A
counterexample to the leftwards implication is
x = 0, y = π.

(b) Being an inverse, arcsin has to be one-to-one.
So, x = y ⇐⇒ arcsin x = arcsin y.

(c) The implication is x = y =⇒ |x| = |y|. A
counterexample to the leftwards implication is
x = 1, y = −1.

1912. We factorise top and bottom, finding the factors
by spotting them or by solving 3x2 + 5x + 2 = 0
and 6x2 − 11x − 10 = 0. This gives

(3x + 2y)(x + y)
(3x + 2y)(2x − 5y) ≡ x + y

2x − 5y
.

1913. Using (a, b, c) with c as the hypotenuse, the whole
square has area c2. This can also be expressed as
the sum of four triangles and the central square,
giving

(b − a)2 + 4 × 1
2 ab = c2

=⇒ b2 − 2ab + 2ab + a2 = c2

=⇒ a2 + b2 = c2, as required.

1914. This is true. Both the statements are expressions
of the condition of independence. If information
about B occurring doesn’t affect the probability of
A (as the left-hand statement says), then it cannot
affect the probability of not-A (as the right-hand
statement says). The reverse also holds.

1915. Any set of three distinct, concurrent lines provides
a counterexample, such as y = x, y = 2x, y = 3x.
These all meet at a unique point, (0, 0).

1916. Set the first derivative to zero to find stationary
points: 4x3 − 9x2 = 0. This has solution x = 0 or
x = 9

4 . The second derivative, then, is

d2y

dx2 = 12x2 − 18x = 6x(2x − 3).

This is zero at x = 0. Furthermore, there is only a
single factor of x, so the second derivative changes
sign at x = 0. Hence, this stationary point is also
a point of inflection.

1917. (a) An arithmetic sequence is linear, and adding a
linear function to a quadratic function yields
another quadratic function. Hence, An + Bn

is quadratic.
(b) This is neither. It is cubic, in fact, since the

ordinal formulae are polynomials of degree 2
and 1, and are multiplied together.

1918. (a) At t = 0, the positions are x1 = x2 = 0
1 = 0.

(b) Equating the positions, they are in the same
place when

t2

t2 + 1 = 4t

4t + 1
=⇒ t2(4t + 1) = 4t(t2 + 1)
=⇒ 4t3 + t2 = 4t3 + 4t

=⇒ t2 − 4t = 0
=⇒ t = 0, 4

The root t = 0 gives the initial positions, so we
want t = 4. Substituting gives x1 = x2 = 16

17 .
(c) In the long-term, both formulae give positions

of the form n
n+1 , which tend towards 1 as n gets

large. Hence, both particles approach x = 1 as
t → ∞.

1919. The equation has roots when either factor is equal
to zero. For the lh factor, this gives x = −1, −2.
For the rh factor, x2 = −1, −2. However, since x2

is always positive, the biquadratic yields no real
roots. Overall, the equation has 2 real roots.

Nota Bene

You can’t use the discriminant here, for either
of two reasons: some roots might be repeated
across the two brackets, and the rh factor is a
biquadratic, which may yield non-real roots even
if the quadratic has non-negative discriminant.

1920. The y coordinate at x = π
4 is

y = 1 − sin2 π
4 = 1 +

( √
2

2

)2
= 3

2 .

Next, using the chain rule,

dy

dx
= 2 sin x cos x.
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Evaluating this, m = 1. This gives the equation of
the tangent as

y − 3
2 = 1(x − π

4 ).

Multiplying by four and rearranging the terms,

4y + π = 4x + 6, as required.

1921. The interior of the circle is the possibility space
here, so we need to calculate the relevant areas.
The successful region is

x

y

The successful region is a quarter of the possibility
space, so p = 1

4 .

1922. (a) This is true. At the root on the left, the graph
is not tangential to the x axis. This root must,
therefore, be a single root.

(b) This is true. Since the graph is cubic and the
root on the left is a single root, the root on the
right, at which there is no sign change, must
be a double root.

(c) This is false.
(d) This is true. By definition, a double root is a

repeated root.

1923. Completing the square, we have

y = ax2 + bx + c

= a

(
x + b

2a

)2
+ c − b2

4a
.

This is a transformation of the graph y = x2:
translation by vector − b

2a i, followed by a stretch
in the y direction with scale factor a, followed by
a translation by vector (c − b2

2a )j. This proves the
result by construction.

1924. (a) The definitions of the sin and cos functions as
the y coordinate and x coordinates of a point
on the unit circle are symmetrical in the line
y = x, which is θ = 45°. The angles θ and
(90 − θ) are equidistant from θ = 45°. This
proves the result.

(b) On a unit circle, adding 90° to θ rotates by a
right angle, producing a perpendicular. Hence,
the new gradient tan(90° + θ) is the negative
reciprocal of tan θ. This is − cot θ, as required.

1925. (a) Completing the square, g(x) = (x − 1)2 − 9.

Hence, the vertex of the parabola y = g(x) is
at (1, −9). Since the quadratic is positive, this
means g(x) is increasing on (1, ∞).

(b) The function f(x) = 10x is exponential growth:
it is increasing for all x ∈ R. Hence, fg(x) is
increasing exactly where g(x) is increasing, i.e.
x ∈ (1, ∞).

1926. We can distribute the differential operator d
dx over

the bracket:
d

dx

(
x3 + dy

dx

)
= 1

=⇒ 3x2 + d2y

dx2 = 1

=⇒ d2y

dx2 = 1 − 3x2.

1927. Ignoring the green counters, we are choosing three
locations for the red counters, giving a possibility
space of 6C3 = 20 equally likely outcomes.

(a) There are two outcomes in which the reds (and
therefore greens) are in a single row, which
gives a probability of 2

20 = 10%.
(b) There are also two outcomes in which the

colours are in a chequerboard pattern, so the
probability is again 10%.

1928. These are circles. The latter is the unit circle, and
the former is(

x + 3
2
)2 +

(
y + 5

2
)2 = 37

2 .

This is centred on
(
− 3

2 , − 5
2
)
, which is a distance

of
√

34
2 from the origin. Therefore, since

√
34
2 = 2.91... <

√
37
2 = 4.30...,

the origin lies inside the first circle. Furthermore,
since the difference is greater than the radius of
the unit circle, as in

1 +
√

34
2 = 3.91... <

√
37
2 = 4.30...,

the unit circle lies entirely within the first circle.
Hence, they do not intersect, as required.

1929. This is false. Factorising the biquadratic,

y = (x2 − 4)(x2 + 3)
≡ (x − 2)(x + 2)(x2 + 3).

This has no repeated factors, which rules out the
possibility that y = 0 is tangent to the curve.

1930. The function is undefined when the denominator is
zero. Since the index 2k is even and d is non-zero,
this can only occur when x2k = c2k, which gives
x = ±c.
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1931. This is a quadratic in cosec x:

cosec2 x + cosec x − 2 = 0
=⇒ (cosec x − 1) (cosec x + 2) = 0
=⇒ cosec x = 1, −2.

=⇒ sin x = 1, − 1
2 .

There are three roots in total: x = π
2 from the first

equation and x = − π
6 , − 5π

6 from the second.

1932. A trivial counterexample is {0}, for which iqr and
range are zero. A non-trivial counterexample is
{0, 0, 0, 1, 1, 1}, for which both are 1.

1933. Each graph is an elementary cubic of the general
shape of y = x3, with its point of inflection at
(a, b). The constant m determines the steepness of
the cubic; this is drawn as m = 1 below.

(a) y − b

(x − a)3 = m

x

y

(a, b)

(b) (y − b)3

x − a
= m

x

y

(a, b)

1934. We can factorise to y = (x+1)(x2−x+2) = 0. The
quadratic has negative discriminant, meaning that
the curve has a single root at x = −1. Sketching,
then, the required area is

−1 x

y

So, the required area is∫ 0

−1
x3 + x + 2 dx

=
[

1
4 x4 + 1

2 x2 + 2x
]0

−1

= −
( 1

4 + 1
2 − 2

)
= 5

4 .

1935. The hexagon is

A B

C

DE

F

(a) Since #    „

AB has no j component, #    „

CD is the same
as #    „

BC with the i component negated. This
gives #    „

CD = −i +
√

3j.
(b) Adding vectors tip-to-tail,

#    „

AD = #    „

AB + #    „

BC + #    „

CD

= 2i + (i +
√

3j) + (−i +
√

3j)
= 2i + 2

√
3j.

1936. Since inverse functions, in order to be invertible,
must be one-to-one, the domain of each function
must be the same set as the codomain of the other.
Hence A = D and B = C.

1937. Since x is a fixed point of the iteration, we know
that rx = x. This gives rx − x = 0, which we can
factorise to x(r − 1) = 0. Hence, x = 0 or r = 1.

1938. A counterexample is the function f(x) = 1
x , with

the values x = −1 and x = 1. There is a sign
change, since f(−1) = −1 < 0 < 1 = f(1), but
there is no root between −1 and 1. Instead, the
function is undefined at x = 0.

1939. The formula for conditional probability is

P(X | Y ) = P(X ∩ Y )
P(Y ) .

Substituting this in gives
P(A ∩ B)
P(B) = k

P(A ∩ B)
P(A) .

We can then divide by P(A∩B), which is non-zero:

k = P(A)
P(B) = 0.4

0.5 = 0.8.

1940. The Newton-Raphson method fails if it generates
an approximation to the root which lies outside
the domain of the function. For instance, if we
look for the root of f(x) =

√
2 sin x + 1 = 0 using

the starting approximation x0 = 0, we find that
x1 is not in the domain of the function, so x2 is
undefined:

x

y

αx1
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A second type of failure occurs if x0 is a stationary
point. Then the tangent won’t cross the x axis at
all. So, using the same example as above, if we
begin with x0 = π

2 , then x1 is undefined:

x

y

α x0

A third type of semi-failure occurs if the gradient
at x0 is small, as it is in the vicinity of a stationary
point. This could produce a tangent which finds a
distant root, rather than a nearby one. This isn’t
a failure of the method as such, but rather a failure
to find an intended root.

1941. The implication is |x| = |y| ⇐⇒ x2 = y2. The
modulus statement says that the magnitudes of
the numbers x and y are the same, which means
that the numbers are either equal or negatives of
each other. Squaring x and −x produces the same
result. This gives three equivalent statements:

1 |x| = |y|,
2 x = ±y,
3 x2 = y2.

1942. Both statements are false; the functions f(x) = |x|
and g(x) = −x are counterexamples to both.

(a) f ′(−1) = −1 but |g′(−1)| = | − 1| = 1,

(b)
∫ 1

−1
f(x) dx = 1, but

∣∣∣∣∫ 1

−1
g(x) dx

∣∣∣∣ = |0| = 0.

1943. We can rewrite y = 3x over base 2. This produces

y = 3x

≡
(
2log2 3)x

≡ 2x log2 3.

Comparing this to y = 2x, we have replaced x by
x log2 3. This is a stretch in the x direction, with
scale factor 1

log2 3 = log3 2.

1944. Substituting in, we wish to show that

(n + 1)2 + (n + 1) + 3 < 2(n2 + n + 3)

for all n. Simplifying, this is 0 < n2 − n + 1. Since
the rhs is a positive quadratic, we need only show
that the associated equation n2 − n + 1 = 0 has
no real roots. ∆ is b2 − 4ac = 1 − 4 = −3, which
proves that un+1 < 2un for all n ∈ N.

1945. Replacing x by (x − k) translates a graph by k

in the positive x direction. So, the curves of odd
degree have rotational symmetry around the point
(k, 0) and the curve of even degree has a line of
reflective symmetry at x = k. Hence, the relevant
equations are

(a) y = −(x − k),
(b) y = (x − k)2,
(c) y = −(x − k)3.

1946. The lh expression is not well defined, as t is set
to a: this makes the denominator of the fraction
zero. In the rh expression, however, t is not equal
to a, but only approaches arbitrarily close to it.
And we can take a factor of (t − a) out on the top
and bottom, to get

lim
t→a

(t − a)(t2 + at + a2)
(t − a)(t + a) .

Then, since t ̸= a, we can divide top and bottom
by (t − a), giving

lim
t→a

t2 + at + a2

t + a
.

At this point, it is safe to take the limit, which,
since a is non-zero, yields 1

2a

(
a2 + a2 + a2)

≡ 3
2 a.

1947. The first face can be chosen arbitrarily, wlog, since
a dodecahedron is symmetrical. Then, since the
two faces chosen are distinct, there remain 11 faces
from which to choose the second one. Out of these,
5 border the original one. Hence, the probability
is 5/11.

1948. Every fifth natural number is divisible by 5. So,
the first 125 natural numbers contain 25 numbers
which are divisible by 5, hence 100 which are not
divisible by 5. The sum of the first 125 is

S = 1
2 × 125 × 126 = 7875.

The sum of those divisible by 5 is

S = 5 × 1
2 × 25 × 26 = 1625.

Subtracting these gives 6250, as required.

1949. Multiplying up by x2 − 1,

4x(x − 1) − 4x2(x + 1) + 15(x2 − 1) = 0
=⇒ 4x3 − 15x2 + 4x + 15 = 0.

Since x = 3 is a root, the factor theorem tells us
that (x − 3) is a factor of the lhs. Taking this
factor out,

(x − 3)(4x2 − 3x − 5) = 0.

Using the quadratic formula,

x = 3,
3 ±

√
89

8 .
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1950. Over the domain shown, the graph y = f(x) has
negative gradient, which means the function f is
decreasing.
The gradient f ′, while negative, is increasing on the
domain shown, as the graph is getting shallower.
So, the second derivative is positive, which means
the function f is convex.

1951. Using the index laws
(
ab

)c ≡ abc and ab+c ≡ abac,

(a) e3x = (ex)3,

(b) e3x−1 = (ex)3

e
,

(c) e3x−2 = (ex)3

e2 .

1952. As it stands, we cannot take the limit, i.e. send x

to infinity, as ∞
∞ isn’t well defined. So, we divide

top and bottom by x (which can be taken as non-
zero, since x is heading for positive infinity). This
allows us to take the limit, giving

lim
x→∞

2 + 5
x

2 − 1
x

= 2
2 = 1.

1953. The output of |x| is indeed always positive, but
3 − 2|x| involves multiplication by −1 (reflection
in the x axis), which produces y values below zero.
The graph is

x

3

3
2− 3

2

1954. Vectors x1i + y1j and x2i + y2j are perpendicular
if and only if

y1

x1
= −x2

y2
.

So, we require
5
x

= x + 3
2 .

This is x2 + 3x − 10 = 0, so x = −5, 2.

1955. The lengths of the perpendicular sides are given
by x = 3+ t and y = 4+ t. So, the area equation is
1
2 (3 + t)(4 + t) = 15. Solving this yields t = −9, 2.
We need the positive t = 2.
The hypotenuse is

z =
√

(3 + t)2 + (4 + t)2

≡
√

25 + 14t + 2t2.

Differentiating by the chain rule,

1
2
(
25 + 14t + 2t2)− 1

2 (14 + 4t)
∣∣∣
t=2

= 11√
61

.

1956. (a) Since the two tail probabilities P(Y < 0) and
P(Y > 4) are equal, the mean must lie halfway
between 0 and 4, at µ = 2.

(b) y = 4 is 2/σ standard deviations above the
mean. The probability up to this value is 80%.
So,

Φ−1(0.8) = 0.8416 = 2/σ.

Hence, σ = 2
0.8416 = 2.38 (3sf).

Nota Bene

The function Φ is the area function of the normal
distribution Z ∼ N(0, 1). So, Φ(z) finds the area
up to z:

z

Φ(z)

0

The inverse Φ−1 calculates the z value from a given
area/probability. With reference to Z ∼ N(0, 1),
the visual of the calculation above is

Φ−1(0.8)

80%

0

1957. (a) The cubic is not one-to-one over the domain
R. For instance, the equation x3 − 12x = 0
has three roots at x = 0, ±

√
12: three inputs

map to the same output.
(b) Differentiating, F′(x) = 3x2 − 12. For sps,

3x2 − 12 = 0, which has solution set {±2}.
These are turning points, so the domain of an
invertible version of F cannot extend beyond
them. Hence, the largest a is 2.

(c) Substituting x = ±2 back into the function
gives coordinates (±2, ∓16). So, the codomain
for this version of F must be [−16, 16].

1958. (a) If the inequality has this solution set, then the
boundary equation has solution set {4, 5}. But
there are infinitely many quadratic equations
which have this solution set. Any quadratic of
the form a(x − 4)(x − 5) = 0 does. Hence, a

(and therefore b and c) cannot be determined
using the information given.

(b) Since the solution set of the inequality is given
as outside the values x = 4 and x = 5, the
quadratic must be positive. So, a ∈ (0, ∞).
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1959. The boundary equations (x − 2)2 + (y − 3)2 = 4, 9
are a pair of concentric circles, each with centre
(2, 3) and with respective radii 2 and 3. Hence, the
area we require is the annulus between the two:

(2, 3)

x

y

1960. Differentiating by the chain rule and setting the
derivative to zero, the function is stationary for

cos x − 2 cos x sin x = 0
=⇒ cos x(1 − 2 sin x) = 0
=⇒ cos x = 0 or sin x = 1

2 .

Over [0, 2π), this gives

x = π
2 , 3π

2 , π
6 , 5π

6 .

Using a double-angle formula, the first derivative
is cos x − sin 2x, Hence, the second derivative is
− sin x − 2 cos 2x. This is positive at π/2, 3π/2, and
negative at x = π/6, 5π/6. So, the function has local
maxima at x = π/6, 5π/6.

1961. (a) By symmetry, the probability that a variable is
positive is 0.5. Since the two are independent,
P(Z1, Z2 > 0) = 0.25.

(b) The probability that Z1 = Z2 is zero, since
the normal distribution is continuous. Hence,
it is equally likely that either variable is larger:
P(Z1 < Z2) = 0.5.

(c) Since we need both variables to be positive,
and we also need Z1 < Z2, we multiply the
answers to the first two parts. This gives
P(0 < Z1 < Z2) = 0.125.

1962. The semicircular cross-section looks as follows:
O

BA
1
2 r

Angle AOB is 120°. Hence, sector OAB has area
1
3 πr2. Then, triangle OAB has area 1

2 r2 sin 120°,
which is 1

4
√

3r2. So, the area of the segment is
1
3 πr2 − 1

4
√

3r2. Hence, to obtain the fraction we
require, we divide by the area of the semicircle,
which is 1

2 πr2. This gives
1
3 πr2 −

√
3

4 r2

1
2 πr2 = 1

6
(
4π − 3

√
3
)
.

1963. (a) With n = −1 and 4x in place of x, we take the
first three terms of the binomial expansion:

(1 + 4x)−1 ≈ 1 + (−1)(4x) + (−1)(−2)
2! (4x)2

≡ 1 − 4x + 16x2.

(b) The expansion converges for |4x| < 1, which
we can rewrite as |x| < 1

4 .

1964. We rearrange as follows:

(3x − 2)3 + 8 = 12x

=⇒ (3x − 2)3 − 4(3x − 2) = 0
=⇒ (3x − 2)

(
(3x − 2)2 − 4

)
= 0.

The latter factor is a difference of two squares:

(3x − 2)(3x − 2 + 2)(3x − 2 − 2) = 0
=⇒ (3x − 2)(3x)(3x − 4) = 0
=⇒ x = 0, 2

3 , 4
3 .

1965. Using sin2 θ + cos2 θ ≡ 1, the lhs is cos2 θ = 1
4 .

The rhs is the positive square root of this. Hence,
the first implication doesn’t hold, as the negative
root is also an option. The second implication does
hold, as can be shown by squaring.

1966. We know that l = rθ, with θ in radians. Hence,
since the angle is changing by ω rad/s, the arc
length l is changing by rω units/s. This gives
v = rω.

Nota Bene

This formula can also be derived by differentiating
both sides of l = rθ with respect to time.

1967. (a) Pick a triangle: there are two colourings. From
here, each pair of neighbouring triangles must
be coloured differently, so this leaves no further
options. This gives two ways overall.

(b) There are no restrictions here, so each triangle
may be coloured in one of three ways. There
are nine triangles, giving 39 = 19683 ways.

1968. The associated equation x2 −x+6 = 0 has no real
roots, as its discriminant is ∆ = −23. This puts
the parabola y = x2 − x + 6 entirely above the x

axis. Hence, the inequality is satisfied by any real
x: the solution set is R.

1969. The parabolae are reflections in y = x. So, if one
intersects y = x, then they intersect each other.
Solving simultaneously to find these intersections,
x2 − x = x, so x = 0 or x = 2.
The first derivative is dy

dx = 2x−1. Evaluating this
at x = 0, we get −1. So, the tangent is y = −x.
Since this line crosses y = x at right angles, it
must also be tangent to x = y2 − y. Hence, they
are tangent to each other.
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1970. We multiply by 10n, shifting the digits by n:

x = 0.a1a2...ana1a2...

10nx = a1a2...ana1a2...

Subtracting the upper line from the lower,

(10n − 1)x = a1a2...an

=⇒ x = a1a2...an

99...9︸ ︷︷ ︸
n 9’s

, as required.

1971. The associated equations give the pairs of lines
x = 1, 3 and y = 2, 4. The region satisfying both
inequalities is the square bordered by these lines:

x

y

1 3

2

4

1972. Integrating,
s =

∫ 4

0
3t2 + 2 dt

=
[
t3 + 2t

]4

0

= 72.

So, the average velocity over the time period is
v̄ = 72

4 = 18. Therefore, we want 3t2 + 2 = 18,
which gives t = ±4/

√
3. Only the positive time lies

in [0, 4], so t = 4/
√

3.

1973. We factorise to (1 + x)5(1 + 2x)5. Expanding each
of the factors up to the term in x2 gives

(1 + 5x + 10x2 + ...)(1 + 10x + 40x2 + ...).

When multiplying out, there are three terms in x2:
40x2 + 50x2 + 10x2. So, the coefficient is 100.

1974. Doubling the second equation, we have

2 sin x + cos y = 1,

2 sin x − 8 cos y = 10.

The difference is 9 cos y = −9, so cos y = −1,
which gives sin x = 1. Each equation has one root
in the given domain: (x, y) is (90°, 180°).

1975. The normal distribution will not apply here, for a
number of reasons. Two are as follows:

1 N
(
µ, σ2)

is unimodal. Bu there are male and
female subpopulations, so the population is
likely to show some bimodality.

2 N
(
µ, σ2)

is symmetrical about the mean.
But the population is certain to be skewed,
given that the upper bound (world-record
speed) is significantly closer to the mean that
the lower bound (speed zero).

1976. Since a ̸= b, c ̸= d,

a + b

a − b
= c + d

c − d

⇐⇒ (a + b)(c − d) = (a − b)(c + d)
⇐⇒ ac − ad + bc − bd = ac + ad − bc − bd

⇐⇒ − ad + bc = ad − bc

⇐⇒ bc = ad

The implication running up the page is the one we
need. We can now restart with the first equation:

a

b
= c

d
=⇒ bc = ad.

Putting these two implications together gives the
required result.

1977. Solving
√

x = x gives x = 0, 1, so the domain is
[0, 1]. In this domain, the square root graph is
above y = x, so the height difference between the
curves is given by f(x) =

√
x − x. Hence, the true

area enclosed is

I =
∫ 1

0
x

1
2 − x dx

=
[

2
3 x

3
2 − 1

2 x2
]1

0

= 1
6 .

The trapezium rule approximation with four strips
has strip width h = 1

4 . Hence, it is given by

T = 1
2 · 1

4

{
f(0) + 2

(
f
( 1

4
)

+ f
( 1

2
)

+ f
( 3

4
))

+ f(1)
}

= 0.143283...

The percentage error is

T − I

I
= 0.143283... − 1/6

1/6

= −0.1403..

Hence, the trapezium rule underestimates the true
value of the area by approximately 14%.

1978. Carrying out the integrals,∫ 1
x2 dx =

∫ 1
y2 dy

=⇒ −x−1 + c1 = −y−1 + c2

We multiply by −1, and combine the constants
into a single k, choosing the x side since we want y

as the subject. This gives y−1 = x−1 + k. Taking
the reciprocal of both sides,

y = 1
x−1 + k

.

Multiplying top and bottom by x gives

y = x

kx + 1 .
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1979. Consider x = y3. To produce a parabola that does
not intersect with this, we translate y = x2 in the
y direction. So, a counterexample is x = y3 and
y = x2 + 1:

x

y

Nota Bene

If the quadratic and cubic both had the form
y = f(x), then they would have to intersect. The
equation for intersections would be a cubic, and
every cubic equation has at least one real root.
In the counterexample, however, the equation for
intersections is a sextic: x = (x2 + 1)3. A sextic
has even degree, and can have no real roots.

1980. (a) The function is quadratic in 2x. Let z = 2x,
and it is g(z) = 4z2 − 5z + 1. Completing the
square gives

g(z) = 4(z − 5/8)2 − 9/16.

So, since z = 2x takes all values in R+, this has
minimum −9/16 and range {y ∈ R : y ≥ −9/16}.

(b) With z = 2x, we factorise: (4z − 1)(z − 1) = 0.
So, 2x = 1, 1/4. Taking logs, x = 0, −2. These
differ by 2, as required.

1981. Performing the implicit differentiation d
dx using

the chain rule,
d

dx

√
x + y = x

=⇒ 1
2 (x + y)− 1

2

(
1 + dy

dx

)
= x

=⇒ 1 + dy
dx = 2x

√
x + y

=⇒ dy
dx = 2x

√
x + y − 1.

1982. (a) Differentiating by the chain and quotient rules,

f ′(x) = −e−x +
1
x · x − ln x

x2

≡ −e−x + 1 − ln x

x2 .

This gives f ′
(

1
2
(
1 +

√
5
))

= −0.000129 (3sf).

(b) The gradient is negative, so x0 = 1
2
(
1 +

√
5
)

must be to the right of the stationary point.
The tangent at x0 will therefore cross the x

axis at x1 > x0. And the same will be true of
subsequent iterations: xn+1 > xn. Hence, if
x0 ≥ 1

2
(
1+

√
5
)
, the N-R iteration will diverge

xn → +∞, failing to find the root.

1983. By the definitions of sin and cos, and Pythagoras,
we know that sin2 θ + cos2 θ ≡ 1. Dividing both
sides by sin2 θ,

1 + cos2 θ

sin2 θ
= 1

sin2 θ
.

By definition, cosec and cot are the reciprocals of
sin and tan. So, cot2 θ + 1 ≡ cosec2 θ. qed.

Nota Bene

Should you go into a detailed proof of the first
Pythagorean identity sin2 θ + cos2 θ ≡ 1 here? By
convention, no. I’ve given a quick nod to such a
proof above, but there’s no point in always going
right back to square one. In general, a good proof
quotes results simpler than the one in question,
pointing them out but not proving them.

1984. (a) Let z = x2 + 4. Differentiating this equation
with respect to x and then multiplying by 3,

dz

dx
= 2x

=⇒ 3 dz = 6x dx.

(b) Rearranging a little and making the variable
in the limits explicit,

I =
∫ 1

0
6x sin(x2 + 4) dx

=
∫ x=1

x=0
sin(x2 + 4) × 6x dx.

The limits x = 0, 1 transform to z = 4, 5. We
can now enact the substitution:

I =
∫ z=5

z=4
sin z × 3 dz.

= 3
∫ 5

4
sin z dz, as required.

Nota Bene

Writing a line like 3 dz = 6x dx divides opinion in
mathematical circles. Some mathematicians argue
that you shouldn’t write such things, because dx

and dz don’t mean anything on their own. And
I agree, up to a point. To write dx on its own,
without the presence of another infinitesimal, as in
“dx = x + 3”, is indeed nonsense. However, in
3 dz = 6x dx, the infinitesimals dz and dx are in
the presence of another, albeit on the other side of
the equation.
The equation 3 dz = 6x dx expresses the limit of
the relationship 3 δz ≈ 6x δx as the small finite
quantities δz and δx approach zero. And that is
a well defined idea. The point is, we can choose
to give the equation 3 dz = 6x dx exactly the same
meaning as the equation 3 dz

dx = 6x. And, since the
former gives significant benefit in terms of ease of
use, I see it as a sensible thing to write.
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1985. Applying f twice,

f2(x) = f
(

1
1 + x

)
≡ 1

1 + 1
1+x

≡ 1 + x

1 + x + 1

≡ 1 + x

2 + x
.

Hence,
f3(x) = f

(
1 + x

2 + x

)
≡ 1

1 + 1+x
2+x

≡ 2 + x

2 + x + 1 + x

≡ 2 + x

3 + 2x
, as required.

1986. Since AB is the diagonal of a unit square, its length
is

√
2. The same is true of AC and BC. So, the

triangle is equilateral. Using 1
2 ab sin C, its area is

A△ = 1
2
(√

2
)2 sin 60°

=
√

3
2 .

1987. (a) After the swap, A can have a pair of Jacks or
Queens. The former requires A to give up the
Queen, with probability 1

3 ; the latter requires
A to give up a Jack and receive a Queen, with
probability 2

3 × 2
3 . So,

P(A has a pair) = 1
3 + 2

3 × 2
3 = 7

9 .

(b) If B gives up the King, then B has at least a
pair of Queens; this has probability 1

3 . If B

gives up a Queen, then A must replace it; this
has probability 2

3 × 1
3 . So,

P(B has at least a pair) = 1
3 + 2

3 × 1
3 = 5

9 .

1988. Differentiating, we have g′(x) = 1
2 x− 1

2 . We can
now substitute g(x) and g′(x) into the lhs:

2 g′(x)(g(x) − 1)

≡ 2 · 1
2 x− 1

2
(
x

1
2 + 1 − 1

)
≡ x− 1

2 x
1
2

≡ 1.

Hence, g(x) =
√

x + 1 satisfies the relationship.

1989. Multiplying out the left-hand equation,(
|x| − |y|

)(
|x| + |y|

)
= 0

⇐⇒ |x|2 − |y|2 = 0
⇐⇒ |x|2 = |y|2.

Since a square is positive, we know that |x|2 ≡ x2

and |y|2 ≡ y2, which proves the result.

1990. The first term of the series is

2
√

2
9801

(4k)!(1103 + 26390k)
(k!)43964k

∣∣∣∣
k=0

= 2
√

2
9801

0! × 1103
(0!)43960

= 0.318309878...

Reciprocating this gives 3.141592730..., while the
true value of π is 3.1415926535.... The first six
decimal places are correct, as required.

1991. The average value is given by

f(x) = 1
81

∫ 81

0
f(x) dx

= 1
81

∫ 81

0
x

1
2 dx

= 1
81

[
2
3 x

3
2

]81

0

= 6.

1992. Since a binomial distribution is discrete, we can
rewrite the lhs as P(X = 0 | X = 0, 1). Using the
formula for condition probability, and since {0} is
a subset of {0, 1}, this is

P(X = 0)
P(X = 0, 1) = 1

6 .

The binomial distribution formula then gives

(1 − p)5

(1 − p)5 + 5p(1 − p)4 = 1
6 .

Dividing top and bottom by (1 − p)4,

1 − p

1 − p + 5p
= 1

6 .

Solving this yields p = 1
2 .

1993. (a) Using dy

dx
=

dy
dt
dx
dt

, we get dy

dx
= 3t2

6t
≡ t

2 .

(b) When the particle is travelling parallel to the
line y = x, dy

dx = 1, hence t
2 = 1, giving t = 2.

Substituting this into the expressions for x and
y, the coordinates are (8, 7).

1994. Differentiating,

y = x3 − 4x2 + 2x − 1

=⇒ dy

dx
= 4x2 − 8x + 2

=⇒ d2y

dx2 = 8x − 8.

At x = 3, the second derivative is 16 > 0. The
curve is polynomial, so the second derivative must
remain positive for x values close to 3. Hence, the
curve is convex in the vicinity of (3, −4).
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1995. The difference between the sequences is

an − bn = −500 + 60n − 2n2.

This is a negative quadratic, which has a maximum
at (15, −50). At this point, the value of |an −bn| is
50; at all other points, the value of |an −bn| will be
greater. Hence, the minimum of |an − bn| occurs
at n = 15.

1996. This is true. The second statement is simply the
derivative with respect to x of the first. Hence, if
the first statement holds, then so does the second.

1997. Force C exerts no moment around the centre, since
the line of action goes through the centre. Forces
B and E cancel out, since their lines of action are
equidistant (horizontally to the left and right) from
the centre. So, we need consider only forces D and
A, which exert moments in opposite wise.
Since the forces have the same magnitude, only the
perpendicular distance from the centre to the line
of action matters. This is l for A and

√
3

2 l < l for
D. Hence, A will exert a greater moment, and the
merry-go-round will rotate anticlockwise.

1998. Let x = √
y. This gives

x

1 + x
+ x + 1

x − 1 = 4.

Multiplying up by the denominators,

x(x − 1) + (x + 1)2 = 4(x − 1)(x + 1)
=⇒ x2 − x + x2 + 2x + 1 = 4x2 − 4
=⇒ 0 = 2x2 − x − 5

=⇒ x = 1 ±
√

41
4 .

Taking the positive root,

√
y = 1 +

√
41

4

=⇒ y = 21 +
√

41
8 .

1999. This is incorrect. When the accelerator is pressed,
a driving force is indeed generated, but it acts
backwards on the ground. The Newton iii pair
of this force, which is by definition also a driving
force, acts forwards on the car. This is what causes
the car to accelerate.

2000. The derivative of cot x is − cosec2 x. Substituting
this into the lhs of the differential equation gives
cot2 x − cosec2 x + 1. By the third Pythagorean
trig identity, this is equal to zero, as required.

End of Volume II


